Two dimensional wave-Klein–Gordon equations with a below-critical nonlinearity
نویسندگان
چکیده
Abstract In this paper we investigate the small data global existence and pointwise decay of solutions to two systems coupled wave-Klein–Gordon equations in spatial dimensions. particular, consider critical (in sense time decay) semilinear nonlinearities for wave equation below-critical Klein–Gordon equation, a situation that has not been studied before context equations. An interesting feature our is nonlinearity causes field lose its linear behaviour close light cone, even though it enjoys optimal decay.
منابع مشابه
Damped Wave Equation with a Critical Nonlinearity
We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity { ∂2 t u+ ∂tu−∆u+ λu 2 n = 0, x ∈ Rn, t > 0, u(0, x) = εu0 (x) , ∂tu(0, x) = εu1 (x) , x ∈ Rn, where ε > 0, and space dimensions n = 1, 2, 3. Assume that the initial data u0 ∈ H ∩H, u1 ∈ Hδ−1,0 ∩H−1,δ, where δ > n 2 , weighted Sobolev spaces are H = { φ ∈ L; ...
متن کاملOn blowup for semilinear wave equations with a focusing nonlinearity
In this paper we report on numerical studies of formation of singularities for the semilinear wave equations with a focusing power nonlinearity utt−∆u = u in three space dimensions. We show that for generic large initial data that lead to singularities, the spatial pattern of blowup can be described in terms of linearized perturbations about the fundamental selfsimilar (homogeneous in space) so...
متن کاملNon-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity
The authors consider non-autonomous dynamical behavior of wave-type evolutionary equations with nonlinear damping and critical nonlinearity. These type of wave equations are formulated as continuous non-autonomous dynamical systems (cocycles). A sufficient and necessary condition for the existence of pullback attractors is established. The required compactness for the existence of pullback attr...
متن کاملThe Two-Dimensional Incompressible Boussinesq Equations with General Critical Dissipation
The two-dimensional incompressible Boussinesq equations with partial or fractional dissipation have recently attracted considerable attention and the global regularity issue has been extensively investigated. This paper aims at the global regularity in the case when the dissipation is critical. The critical dissipation refers to α + β = 1 when Λα ≡ (−Δ)α2 and Λβ represent the fractional Laplaci...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations And Applications Nodea
سال: 2023
ISSN: ['1420-9004', '1021-9722']
DOI: https://doi.org/10.1007/s00030-023-00863-x